Технология поверхностного монтажа.


<<< Назад   Главная раздела


Автор: Кравченко К.В.

Сайт: www.kkbweb.narod.ru

E-mail: kkbweb@mail.ru

Собственно, эта статья - мой отчет по летней технологической практике, поэтому не стоит удивляться несколько особенному изложению. На мой взгляд, в нем есть многое интересное не только для применения в радиолюбительской практике, но и просто для расширения кругозора и понимая общих технологических этапов производства в современной радиоэлектронной промышленности. Отчет имеет размер на бумаге в 32 страницы, но информации было несколько больше, поэтому эта статья несколько, более шире и полна.

Содержание.

Введение.

1.      Типы печатных плат.

1.1.   Односторонние печатные платы.

1.2.   Двухсторонни печатные платы.

1.3.   Многослойные печатные платы.

1.4.   Гибкие печатные платы.

1.5.   Рельефные печатные платы.

1.6.   Высокоплотная печатные платы.

2.      Сборка и монтаж элементов на печатные платы.

2.1.   Типы SMT сборок.

2.2.   Нанесение припойной пасты.

2.2.1.    Выбор припойной пасты.

2.2.2.    Трафаретный метод нанесения припойной пасты.

2.2.3.    Дисперсный метод нанесения припоя.

2.3.   Установка компонентов на плату.

2.3.1.    Автоматическая установка компонентов.

2.3.2.    Ручная установка компонентов.

3.      Поверхностно монтируемые компоненты.

4.      Пайка.

4.1.   Пайка волной припоя.

4.2.   Пайка расплавлением дозированного припоя с инфракрасным (ИК) нагревом.

4.3.   Пайка расплавлением дозированного припоя в парогазовой фазе (ПГФ).

4.4.   Лазерная пайка.

4.5.   Пайка в глухие отверстия.

Рекомендую посетить.

Использованные источники.

Введение.

При современном развитии радиоэлектронной промышленности, особенно микроэлектронной и появлением больших интегральных схем (БИС) и сверхбольших интегральных схем (СБИС) стало очевидно, что прежние методы конструкции и монтажа печатных узлов радиоэлектронных устройств не могли обеспечить, те требования, которые предъявляли им, те же корпуса БИС и СБИС с числом выводом более 100 и шагом между ними менее 0,6 мм, поэтому был предложен новый метод, так называемого поверхностного монтажа, когда элементы располагаются не на штыревых выводах вставленных в соответствующие отверстия в печатной плате или припаянные к соответствующим лепесткам, а непосредственно к контактным площадкам  на печатной плате, сформированными токоведущими дорожками. Это позволило не только добиться огромной миниатюризации собранных таким образом устройств, но и к значительному снижению массы и стоимости, т.к. данная технология подразумевает наличие полностью автоматизированного производства, практически без участия человеческой силы.

 

1.      Типы печатных плат.

Появление печатных плат (ПП) в их современном виде совпадает с началом использования полупроводниковых приборов в качестве элементной базы электроники. Переход на печатный монтаж даже на уровне одно- и двухсторонние плат стал в свое время важнейшим этапом в развитии конструирования и технологии электронной аппаратуры.

Разработка очередных поколений элементной базы (интегральная, затем функциональная микроэлектроника), ужесточение требований к электронным устройствам, потребовали развития техники печатного монтажа и привели к созданию многослойных печатных плат (МПП), появлению гибких, рельефных печатных плат.

Многообразие сфер применения электроники обусловило совместное существование различных типов печатных плат:

Ø      Односторонние печатные платы;

Ø      Двухсторонние печатные платы;

Ø      Многослойные печатные платы;

Ø      Гибкие печатные платы;

Ø      Рельефные печатные платы (РПП);

Ø      Высокоплотная односторонняя печатная плата

1.1.  Односторонние печатные платы.

Односторонние платы по-прежнему составляют значительную долю выпускаемых в мире печатных плат. В предыдущем десятилетии в США они составляли около 70% объема выпуска плат в количественном исчислении, однако, лишь около 10 % в стоимостном. В Великобритании такие платы составляют около четверти от объема всего производства.

     Маршрут изготовления односторонних плат традиционно включает сверление, фотолитографию, травление медной фольги, защиту поверхности и подготовку к пайке, разделение заготовок. Стоимость односторонних плат составляет 0,1 - 0,2 от стоимости двухсторонних плат, это делает их вполне конкурентными, особенно в сфере бытовой электроники.

     Отметим, однако, что для современных электронных устройств, даже бытового назначения, односторонние платы часто требуют контурного фрезерования, нанесения защитных маскирующих покрытий, их сборка ведется с посадкой кристаллов непосредственно на плату или поверхностным монтажом.

    Пример такой платы в сборе, используемой в цифровом спидометре - альтиметре горного велосипеда, показан на рисунке 1.1.

Рисунок 1.1 – Пример односторонней печатной платы.

Типовые параметры плат:

Ø      Макс. размеры заготовки - 400 мм x 330 мм

Ø      Минимальный диаметр отверстия - 0,6-0,4 мм

Ø      Минимальная ширина проводника - 0,15 мм

Ø      Минимальный зазор - 0,15 мм

Ø      Толщина фольги - 36 мкм

Ø      Толщина платы - 0,4 - 1,6 мм

1.2.   Двухсторонние печатные платы.

Двухсторонние платы составляют в настоящее время значительную долю объема выпуска плат, например, в Великобритании до 47 %. Не претендуя на однозначность оценок, а опираясь лишь на собственную статистику последних трех лет, можно оценить долю двухсторонних плат в российском производстве в 65 - 75%.

     Столь значительное внимание разработчиков к этому виду плат объясняется своеобразным компромиссом между их относительно малой стоимостью и достаточно высокими возможностями.      Технологический процесс изготовления двухсторонних плат, также как односторонних, является частью более общего процесса изготовления многослойных ПП. Однако для двухсторонних плат не требуется применять прессования слоев, значительно проще выполняется очистка отверстий после сверления.

     Вместе с тем, для большинства двухсторонних плат за рубежом проектные нормы "проводник / зазор" составляют 0,25 / 0,25 мм (40% от объема выпуска), 0,2 / 0,2 мм (18%) и 0,15 / 0,15 мм (18%). Это позволяет использовать такие платы для изготовления широкого круга современных изделий, они вполне пригодны как для монтажа в отверстия, так и для поверхностного монтажа. Нередко на проводники двухсторонних плат наносится золотое покрытие, рисунок 1.2, а для металлизации отверстий используется серебро рисунок 1.3.

Рисунок 1.2 – Двухсторонняя печатная плата с золотым покрытием проводников.

Рисунок 1.3 – Двухсторонняя печатная плата с металлизироваными серебром отверстиями.

Типовые параметры двухсторонних плат:

Ø      Максимальные размеры заготовки - 300x250...500х500 мм;

Ø      Минимальный диаметр отверстия - 0.4...0,6 мм;

Ø      Минимальная ширина проводника - 0,15 мм;

Ø      Минимальный зазор - 0,15 мм;

Ø      Толщина фольги - 18..36 мкм;

Ø      Толщина платы - 0,4 - 2,0 мм;

 

     Опираясь на опыт многих фирм занимающимся производством печатных плат, прототипы от отечественных заказчиков двухсторонних плат, можно констатировать, что запросы отечественных разработчиков удовлетворяются пока диапазоном проектных норм 0,2 / 0,2 - 0,3 / 0,3 мм, норма 0,15 / 0,15 мм встречается не более, чем в 10% случаев.

     Отметим, что отечественные разработчики, точно также как их зарубежные коллеги, закладывают в технические задания на изготовление двухсторонних плат нанесение паяльной маски, маркировку, весьма часто - фрезерование плат по сложному контуру. Как правило, сборка таких плат предусматривает поверхностный монтаж компонентов.

1.3.   Многослойные печатные платы.

Многослойные печатные платы (МПП) составляют две трети мирового производства печатных плат в ценовом исчислении, хотя в количественном выражении уступают одно- и двухсторонним платам.

По своей структуре МПП значительно сложнее двухсторонних плат. Они включают дополнительные экранные слои (земля и питание), а также несколько сигнальных слоев. На рисунке 1.4 представлена структурная схема многослойной печатной платы.

Для обеспечения коммутации между слоями МПП применяются межслойные переходы (vias) и микропереходы (microvias).

Межслойные переходы могут выполняться в виде сквозных отверстий, соединяющих внешние слои между собой и с внутренними слоями, применяются также глухие и скрытые переходы.

Глухой переход - это соединительный металлизированный канал, видимый только с верхней или нижней стороны платы. Скрытые же переходы используются для соединения между собой внутренних слоев платы. Их применение позволяет значительно упростить разводку плат, например, 12-слойную конструкцию МПП можно свести к эквивалентной 8-слойной. коммутации.

Рисунок 1.4 – Структура многослойной печатной платы.

Специально для поверхностного монтажа разработаны микропереходы, соединяющие между собой контактные площадки и сигнальные слои.

Для изготовления МПП производится соединение нескольких ламинированных фольгой диэлектриков между собой, для чего используются склеивающие прокладки - препреги. Поэтому толщина МПП растет непропорционально быстро с ростом числа сигнальных слоев.

Рисунок 1.6

В связи с этим необходимо учитывать большое соотношение толщины платы к диаметру сквозных отверстий. Например, для МПП с диаметром отверстий 0,4 мм и толщиной 4 мм это соотношение равно 10:1, что является весьма жестким параметром для процесса сквозной металлизации отверстий.

Тем не менее, даже учитывая трудности с металлизацией узких сквозных отверстий, изготовители МПП предпочитают достигать высокой плотности монтажа за счет большего числа относительно дешевых слоев, нежели меньшим числом высокоплотных но, соответственно, более дорогих слоев.

В современных МПП широко применяется поверхностный монтаж всех видов современных интегральных схем, включая, как это показано на рисунке, бескорпусных схем, заливаемых компаундом после разварки выводов.

Рисунок 1.7 – Пример разтолщинки 8-слойной печатной платы.

1.4.   Гибкие печатные платы.

Использование гибких диэлектрических материалов для изготовления печатных плат дает как разработчику, так и пользователю электронных устройств ряд уникальных возможностей. Это прежде всего - уменьшение размеров и веса конструкции, повышение эффективности сборки, повышение электрических характеристик, теплоотдачи и в целом надежности.

Если учесть основное свойство таких плат - динамическую гибкость - становится понятным все возрастающий объем применения таких плат в автомобилях, бытовой технике, медицине, в оборонной и аэрокосмической технике, компьютерах, в системах промышленного контроля и бортовых системах.

Гибкие печатные платы (ГПП) изготавливаются на полиимидной или лавсановой пленке и поэтому могут легко деформироваться даже после формирования проводящего рисунка. Большая часть конструкций гибких ПП аналогична конструкциям печатных плат на жесткой основе.

Односторонние ГПП - наиболее распространены в этом классе плат, поскольку проявляют наилучшую динамическую гибкость. Контактные площадки таких плат расположены с одной стороны, в качестве материала проводящей фольги чаще всего используется медь.

Односторонние ГПП с двухсторонним доступом имеют один проводящий слой, контактные площадки к которому выполнены с обеих сторон платы.

 Двухсторонние ГПП имеют два проводящих слоя, которые могут быть соединены сквозными металлизированными переходами (на рисунке проводники нижнего слоя идут перпендикулярно проводникам верхнего слоя). Платы этого типа обеспечивают высокую плотность монтажа, часто применяются в электронных устройствах с контролируемым полным сопротивлением (импедансом) плат.

Многослойные ГПП содержат не менее трех проводящих слоев, соединенных металлизированными отверстиями, которые обеспечивают межслойное соединение. В таких платах проще реализовывать высокую плотность монтажа, поскольку не требуется обеспечивать большие значения соотношений "высота/диаметр отверстия". Прогнозируется применение таких ГПП для сборки на них многокристальных интегральных схем.

Жестко-гибкие ПП являются гибридными конструкциями и содержат как жесткие, так и гибкие основания, скрепленные между собой в единую сборку и электрически соединенные металлизированными отверстиями. Наиболее распространены в изделиях оборонной техники, однако расширяется их применение и в промышленной электронике.

ГПП с местным ужесточением (укреплением).В таких платах возможно размещение внутри гибкой основы жестких металлических деталей. Получаются многоэтапным процессом фотолитографии и травления.

"Статические" гибкие печатные платы - гибкость используется только при операциях сборки.

"Динамические" гибкие печатные платы делятся на:

Ø      "периодически" гибкие (сотни-тысячи циклов перегибов),

Ø      "непрерывно" гибкие (млн - млрд циклов перегибов).

 

Назначение и конструкция гибких и гибко-жестких печатных плат.

Стандарт IPC - T - 50 "Terms and Definition for Printed Boards" так определяет гибкие печатные платы (ГПП): "Печатные платы, использующие гибкий базовый материал, с или без гибкого защитного покрытия".

Рынок гибких печатных плат в 2000 году ожидается около 5 млрд. долл., с ежегодным ростом 12-17%.

Применение гибких печатных плат:

Ø      автомобили (панели, системы контроля...);

Ø      бытовая техника (35 мм камеры, видеокамеры, калькуляторы…);

Ø      медицина (слуховые аппараты, сердечные стимуляторы...);

Ø      вооружение и космос (спутники, панели, радарные системы, приборы ночного видения...);

Ø      компьютеры (печатающие головки, управление дисками, кабели ...);

Ø      промышленный контроль ( коммутирующие приборы, нагреватели...);

Ø      инструменты (рентгеновское оборудование, счетчики частиц ...);

Ø      разное (оружие, торпеды, электронное экранирование, радиосвязь...);

Мотивы применения гибких печатных плат:

Ø      динамическая гибкость;

Ø      уменьшение размера конструкции;

Ø      уменьшение веса ( 50 - 70% при замене проводного монтажа, до 90% при замене жестких плат);

Ø      улучшение эффективности сборки;

Ø      уменьшение стоимости сборки (уменьшение числа операций);

Ø      увеличение выхода годных при сборке;

Ø      улучшение надежности ( уменьшение числа уровней соединений);

Ø      улучшение электрических свойств (унифицированные материалы, волновое сопротивление, уменьшение индуктивности);

Ø      улучшение рассеивания тепла (плоские проводники, рассеивание тепла на обе стороны...);

Ø      возможность трехмерной конструкции упаковки;

Ø      совместимость с поверхностным монтажом компонентов (совместимость по коэффициенту расширения...);

Ø      упрощение контроля (визуального и электрического...);

Характеристики материала для гибких печатных плат:

Ø      размерная стабильность;

Ø      теплоустойчивость (выдерживать пайку без разрушений и снижения гибкости);

Ø      устойчивость к разрыву;

Ø      приемлемые электрические свойства;

Ø      гибкость при экстремальных температурах;

Ø      низкое водопоглощение (расслоение, отслоение при нагреве);

Ø      химическая стойкость (при производстве и при использовании);

Ø      негорючесть;

Ø      общие требования (стабильность характеристик, множественность источников поставки, стоимость, количество необходимого материала в изделии…);

Основные элементы конструкции гибких печатных плат: базовый материал, адгезив, металлическая фольга или базовый материал и металлическая фольга.

Гибкие базовые наиболее популярные материалы - лавсан и полиимид.

Полиимидные пленки - доминирующий материал для изготовления гибких печатных плат.

Имеется ряд формул полиимида с торговыми марками Kapton, Apical,Novax, Espanex, Upilex.

Преимущества:

Ø      отличная гибкость при всех температурах;

Ø      хорошие электрические свойства;

Ø      отличная химстойкость (за исключением горячей концентрированной щелочи);

Ø      очень хорошая устойчивость к разрыву ( но плохое распространение разрыва);

Ø      определенные типы полиимидов имеют дополнительные преимущества (коэффициент расширения согласованный с медью, уменьшенное напряжение в ламинатах...);

Ø      полиимид можно химически травить;

Ø      рабочая температура от –200оС до + 300оС;

Недостатки:

Ø      высокое водопоглощение (до 3% по весу);

Ø      относительно высокая стоимость;

Ø      несмотря на высокую температуру стеклоперехода (напр. 500оС для Upilex S) их высокотемпературные свойства ограничивают адгезивы;

Лавсановые пленки (полиэтилентерефталат,PET).

Есть ряд торговых марок - Mylon, Melinex, Luminor, Celanar.

Положительные стороны:

Ø      Это низкотемпературный термопласт (легко формуется);

Ø      Очень низкая стоимость;

Ø      Хорошая устойчивость к разрыву и распространению разрыва;

Ø      Очень хорошая гибкость.;

Ø      Хорошая химстойкость;

Ø      Низкое влагопоглощение;

Ø      Хороший баланс электрических характеристик;

Ø      Рабочий диаппазон температур от -60оС до +105ОС;

Отрицательные стороны:

Ø      ограниченность к пайке (имеет низкую точку плавления);

Ø      нельзя использовать при очень низких температурах (становится хрупким);

Ø      недостаточная размерная стабильность (применяют термостабилизацию);

Адгезивы.

Адгезивы используются для соединения медной фольги с базовой пленкой, а при частично полимеризованном виде служат для создания защитных слоев однослойных и двухслойных гибких печатных плат, а также объединяют слои для многослойных и гибко-жестких конструкций. Роль адгезивов является определяющей и критической для свойств конечного продукта.

Часто они являются ограничивающим элементом в термических свойствах гибких печатных плат, когда используется полиимид в качестве базового материала. Акриловый адгезив имеет значительную популярность, его применяют для полиимида (травится в щелочи, большой коэффициент расширения). Эпоксид и модифицированный эпоксид в качестве адгезива хрупок. Полиимидный адгезив требует очень высокой температуры обработки.

Большинство гибких ламинатов используют катанную и ненагартованную фольгу. Имеется также ряд способов металлизации гибких пленок напылением и химическим или вакуумным осаждением. Фольга из специальных медных сплавов имеет большее сопротивление и большую прочность, обеспечивая большую устойчивость к перегибам, сравнимую с катаной фольгой. Кроме того такая фольга более устойчивая в производстве ламината - меньше дефектов.

Защитные слои - аналог паяльной маски. Они увеличивают устойчивость к перегибам.

Защитные покрытия - акрилаты, полиуретаны, акрилэпоксиды. Жидкие. Отверждение - УФ или тепло.

Фоточувствительные защитные слои - пленки и жидкие для сеткографии.

Соединительные пленки - пленки с адгезивом, защищенные снимаемой пленкой. Применяются для многослойных гибких печатных плат и гибко-жестких плат.

Рекомендации для конструирования гибких печатных плат:

Ø      избегать расположения сквозных металлизированных отверстий на изгибающихся поверхностях;

Ø      не трассировать проводники под углом 90о к направлению изгиба;

Ø      не трассировать проводники на одиночных слоях в области изгибов;

Ø      дугу изгиба не делать малой: для увеличения срока службы динамических гибких печатных плат;

Ø      проектировать с расположением медных слоев в нейтральной части гибких печатных плат;

Ø      обеспечивать максимально допустимый радиус перегибов;

Производство гибко-жестких плат.

Это наиболее сложные соединительные структуры современной электронной аппаратуры. Требуются элементы обоих технологий - жестких и гибких печатных плат. Жесткие платы спрессовываются с гибкими и осуществляются соответствующие сквозные межслойные соединения. Простейшая гибко-жесткая плата - один жесткий и один гибкий слой . Сложные гибко-жесткие платы могут содержать десять-двадцать или более гибких соединительных наборов между жесткими внешними слоями. Одно- и двухслойные гибкие печатные платы составляют гибкие соединительные наборы.

Гибко-жесткие платы очень сложны в производстве. Они используют большой набор разнородных материалов разной природы и размерной стабильности, а также разной степени надежности металлизации.

Маршрутная схема изготовления гибко-жестких печатных плат:

Ø      Нарезка гибких и жестких ламинатов в размер групповых заготовок и маркировка;

Ø      Создание базовых отверстий в заготовках;

Ø      Создание на гибких слоях рисунка проводников (фотохимия и травление), в некоторых соединительных областях могут формироваться межслойные металлизированные переходы;

Ø      Припрессовывание защитных слоев на травленный рисунок;

Ø      Жесткие ламинаты предварительно фрезеруются для обеспечения удаления ненужных частей после изготовления (полное выфрезеровывание или фрезерование на определенную глубину или скрайбирование материала);

Ø      Нарезка соединительных прокладок с удалением определенных областей, обеспечивая предохранение гибких областей от склеивания между собой и с жесткими частями;

Ø      Спрессовывание вместе защищенных схемных слоев и жестких внешних слоев с помощью вырезанных гибких соединительных листов;

Ø      Гибко-жесткая панель сверлиться с использрванием той же системы базирования;

Ø      Очистка отверстий с помощью плазменного травления;

Ø      Химическая и электрохимическая металлизация;

Ø      Формирование негативного изображения на наружных слоях;

Ø      Электрохимическая металлизация окон в рисунке - медь, затем олово-свинец;

Ø      Удаление фоторезиста и травление меди;

Ø      Снятие олово-свинца;

Ø      Нанесение паяльной маски на жесткие части;

Ø      Горячее лужение;

Ø      Выфрезеровывание гибко-жестких плат из заготовки. Лишние жесткие части механически удаляются;

Проблемы гибко-жестких плат:

Ø      Выдерживание требований термоциклов и термоударов (много адгезивов с высоким коэффициентом теплового расширения);

Ø      Первое решение проблемы применение безадгезивных материалов;

Ø      Второе решение проблемы применение новых или улучшенных конструкций (например, усиление металлизации сквозных отверстий);

Ø      Контроль и испытание гибких печатных плат;

Для гибких печатных плат имеется два уровня контроля и испытаний: Первый уровень проводится над исходными материалами, используемыми в производстве гибких печатных плат, второй уровень осуществляется над конечным продуктом.

Испытание исходных материалов:

Ø      испытание физических свойств;

Ø      испытание химических свойств;

Ø      испытание электрических свойств;

Ø      испытания влияния на окружающую среду;

Испытания физических свойств:

Ø      гибкость при низкой температуре;

Ø      размерная стабильность;

Ø      содержание летучих веществ;

Ø      прочность на разрыв и удлинение;

Ø      усилие инициирования разрыва;

Ø      усилие распространения разрыва;

Ø      усилие отслоения (в состоянии постави, после ванны с припоем, после термоциклов);

Испытание химических свойств:

Ø      химическая устойчивость (концентрированные кислоты, основания, растворители);

Ø      горючесть (UL94V-0);

Испытание электрических свойств:

Ø      диэлектрическая постоянная;

Ø      фактор рассеивания;

Ø      диэлектрическая прочность;

Ø      поверхностное сопротивление;

Ø      объемное сопротивление;

Испытание влияния на окружающую среду:

Ø      влагопоглощение;

Ø      сопротивление изоляции во влаге;

Ø      сопротивления образования грибков;

Спецификации и стандарты:

ГОСТ 23751 – 86 . Печатные платы.Основные параметры конструкции.

ГОСТ 23751 – 79*. Печатные платы.Требования и методы конструирования.

IPC-FC-231C Flexible Bare Dielectric for Use in Flexible Printed Wiring.

IPC-FC-232C Adhesive Coated Films for Use as Cover Sheets Flex Circuits.

IPC-FC-241C Flexible Metal-clad Dielectrics for Use in Fabrication of Flexible Printed Wiring.

IPC-RF-245A Performance Specification for Rigid-flex Printed Boards.

IPC-D-249 Design Standart for Flexible Single- and Double-sided Printed Boards.

IPC- FC-250A Performance Specification for Single- and Double- sided Flexible Printed Wiring.

1.5.   Рельефные печатные платы (РПП).

Конструкция и технология изготовления РПП существенно отличаются от традиционных двухсторонних (ДПП) и многослойных (МПП) плат. Заметим, что авторами большинства конструкций и технологий РПП в нашей стране являются А.В. Богданов и Ю.А. Богданов.

РПП (рисунок 1.8) представляет собой диэлектрическое основание, в которое углублены медные проводники, выполненные в виде металлизированных канавок, и сквозные металлизированные отверстия, имеющие форму двух сходящихся конусов. Такие канавки и отверстия заполняются припоем. Обычно РПП имеют два проводящих и один изоляционный слой.

Рисунок 1.8 – Рельефная печатная плата.

 Как видно из рисунка 1.9, элементы проводящего рисунка могут быть следующих видов:

Ø      прямолинейные проводники на первом и втором слоях; переходные металлизированные отверстия (для электрического соединения элементов рисунка на проводящих слоях);

Ø      сквозные монтажные металлизированные отверстия (для монтажа штыревых выводов электронных компонентов;

Ø      металлизированные ламели (для монтажа планарных выводов электронных компонентов;

Ø      глухие монтажные металлизированные отверстия (для монтажа планарных выводов электронных компонентов, формованных для пайки встык).

Проводники прямолинейны и параллельны осям Х и У, что связано с особенностью технологического оборудования изготовления канавок.

Рисунок 1.9 – Рисунок проводящих элементов.

Характеристики рельефных плат.

Диаметр переходных металлизированных отверстий на поверхности диэлектрического основания не превышает ширины проводника. При этом контактные площадки вокруг переходных отверстий отсутствуют. Это обеспечивает возможность установки переходов в шаге трассировки (в соседних дискретах трассировки) без всяких ограничений. Обычно трассировка РПП проводится в строго ортогональной системе, что означает проведение горизонтальных проводников на одном проводящем слое, а вертикальных проводников - на другом. Это обеспечивает большие трассировочные возможности, чем при других системах, но при этом появляется большое число переходов. Однако для РПП, в отличие от любых других, переходы повышают, а не понижают надежность платы.

Рисунок 1.10 – Основные размеры РПП.

Основным параметром конструкции РПП, определяющим другие ее параметры, является минимальный шаг трассировки minH. Здесь существенно использование переменного шага трассировки. Первоначально это диктовалось применяемым технологическим оборудованием, обеспечивавшим перемещение с дискретностью 10 мкм. В дальнейшем обнаружилось, что это повышает трассировочные возможности за счет симметричного прохождения трасс через большинство монтажных точек. Кроме того, переменный шаг позволяет повысить технологичность путем смещения центров переходных отверстий от краев монтажных точек.

На рисунок 1.11 приведены варианты используемых постоянных и переменных шагов трассировки для РПП с микросхемами, имеющими следующие типы и шаги внешних выводов: штыревые - 2,5 мм, планарные - 1,25 мм и планарные - 1,0 мм.

Рисунок 1.11 - Варианты используемых постоянных и переменных шагов трассировки.

В таблице 1 приведены типовые значения конструктивных параметров РПП для minH рис 3. И таблицы видно, что особенностью РПП является их малая толщина по сравнению с ПП. Это в сочетании с насыщенностью металлом диэлектрического основания обеспечивает хорошую теплопроводность. Сечение меди в канавках обеспечивает погонное сопротивление 3-3,5 Ом/м и предельный ток по проводнику 300-400 мА. Эти параметры следует принимать во внимание при проектировании цепей питания, а так же сильноточных сигнальных цепей.

Таблица 1 - Типовые значения конструктивных параметров РПП.

min H, мм

L, мм

G, мм

D, мм

d, мм

M, мм

0,62

1,5

0,3

0,3

0,15

0,04

0,5

1,0

0,25

0,25

0,15

0,04

0,4

0,8

0,25

0,2

0,12

0,035

0,32

0,6

0,15

0,16

0,1

0,03

 

Малый шаг трассировки в сочетании с переходными отверстиями в шаге трассировки обеспечивает высокие трассировочные возможности РПП.

Сравнение технологических и стоимостных характеристик рельефной и многослойной печатной платы:

Трассировочная способность

Плотность размещения элементов на РПП эквивалентна 6-8 слоям МПП. Например, между выводами стандартного DIP корпуса можно проводить до 5 проводников. Высокая трассировочная способность объясняется, в частности тем, что переходные отверстия могут быть расположены в шаге проводников.


Электрические характеристики

Так как поперечное сечение проводника РПП имеет форму трапеции, то по постоянному току его сопротивление в 1,5 раза меньше, чем у плоских проводников. Характеристики по переменному току у РПП и МПП существенно не отличаются.

Механические характеристики

РПП - принципиально тонкая плата (0,8 мм). Поэтому для установки массивных элементов или для плат большого размера требуется механическая арматура. Но, с другой стороны, РПП очень устойчивы к изгибу. Для РПП не страшны прогибы до 40-50%.

Изготовление ламелей

РПП - тонкие платы, поэтому прямое изготовление ламелей для разъемов типа ISA-РС может не обеспечить достаточно надежного контакта. Для решения указанной проблемы имеется специальный технологический прием, позволяющий получить в районе ламелей удвоенную толщину (1,5 мм), чем и обеспечивается надежное соединение.

Стойкость к воздействию внешних факторов

РПП ничем не уступают по стойкости к воздействию внешних факторов традиционным платам. Более того, металлизация РПП выполняется из химически однородной меди и для РПП проблема контакта в области переходного отверстия отсутствует.

Поддержка САПР

Система изготовления РПП совместима практически с любой САПР: PCAD 4.5 .. 8.5 и др.

Серийноспособность

Изготовление РПП не предполагает какой-либо особенной подготовки производства (фотошаблоны, матрицы). Время изготовления платы средней степени сложности составляет 48 часов. Стоимость РПП заметно ниже стоимости многослойных плат для малых серий до 100 - 1000 шт. Однако при увеличении количества стоимость снижается не столь существенно как для многослойных или двусторонних плат. Поэтому изготовление партий РПП более 10000 должно быть тщательно экономически обосновано.

Стоимостные характеристики

При сравнении восьмислойной МПП с РП по средним показателям стоимости получается уменьшение:

для методы фрезерования - приблизительно в 16 раз;

для метода прессования - приблизительно в 36 раз;

для метода литья - приблизительно в 100 раз.

1.6.  Высокоплотные печатные платы.

Пример высокоплотной печатной платы представлен на рисунке 1.13


2.      Сборка и монтаж элементов на печатные платы.

Особенностью современного производства электронных устройств является все более широкое применение больших и сверхбольших интегральных схем (БИС и СБИС). При этом существенно возрастает количество выводов каждой схемы, расстояния между выводами уменьшаются с 2,5 мм до 0,625 мм и менее.

Установка многовыводных корпусов БИС И СБИС на печатные платы технически и экономически более эффективна не в сквозные отверстия, а на контактные площадки, расположенные на поверхности печатных плат.

Этим объясняется все боле широкий переход от монтажа компонентов в отверстия (PTH - Plated Through Hole) к технологии поверхностного монтажа (SMT - Surface Mount Technology).

Вместе с тем, в в настоящее время в большинстве серийных электронных блоков применяют как поверхностный монтаж, так и монтаж в отверстия. Это связано с тем, что конструкции ряда компонентов не пригодны для поверхностного монтажа. Кроме того, в устройствах, работающих в условиях ударных и вибрационных перегрузок, предпочитают монтаж в отверстия из-за более надежного крепления компонентов.

Процесс монтажа элементов на РП существенно не отличается от стандартных процессов. Возможен монтаж в отверстия и на поверхность с применением ручной пайки, пайки волной, пайки в инфракрасных и конвекционных печах. Единственное, что нужно учесть при формовке и установке элементов - это то, что монтажные ламели заглублены на 0,1 мм относительно поверхности платы.

2.1.  Типы SMT сборок.

Surface-Mount Technology (SMT) - технология поверхностного монтажа.

В электронной промышленности существует шесть общих типов SMT сборки, каждому из которых соответствует свой порядок производства. Когда разработчик выбирает тип сборки, его целью должна быть минимизация числа операций, так как каждая операция может увеличивать промышленную стоимость. Существует специальный стандарт, в котором представлены основные виды сборок, разбитые по классам.

SMC и IPC документация по поверхностному монтажу на платы, IPC-7070, J-STD-013 и National Technology Roadmap for Electronic Interconnections включают следующие классификацию следующих схемы поверхностного монтажа:

Тип 1 - монтируемые компоненты установлены только на верхнюю сторону или interconnecting structure

Тип 2 - монтируемые компоненты установлены на обе стороны платы или interconnecting structure

Класс А - только through-hole (монтируемые в отверстия) компоненты

Класс В - только поверхностно монтируемые компоненты (SMD)

Класс С - смешанная: монтируемые в отверстия и поверхностно монтируемы компоненты

Класс Х - комплексно-смешанная сборка: through-hole, SMD, fine pitch, BGA

Класс Y - комплексно-смешанная сборка: through-hole, surface mount, Ultra fine pitch, CSP

Класс Z - комплексно-смешанная сборка: through-hole, Ultra fine pitch, COB, Flip Chip, TCP


Операции используемы при различных типах сборки:

Ø      Нанесение пасты и установка SMT компонентов на верхнюю сторону платы.

Ø      Нанесение пасты и установка SMT на нижнюю сторону платы.

Ø      Нанесение клея и установка SMT компонентов на нижнюю сторону платы с последующем его высыханием.

Ø      Автоматическая установка DIP компонентов.

Ø      Автоматическая установка координатных компонентов (такие как светодиоды и т.п.).

Ø      Ручная установка других компонентов.

Ø      Пайка волной или пайка инфракрасным излучением.

Ø      Промывка плат.

Ø      Ручная пайка компонентов.

Ниже будут рассмотрены основные варианты размещения компонентов на плате, применяемые разработчиками. Варианты, где используются корпуса компонентов типа: Ultra fine pitch, COB, Flip Chip, TCP пока не рассматриваются, так как российскими разработчиками печатных плат они почти не используются.

 

Тип 1В: SMT Только верхняя сторона

Этот тип не является общим так как большинство разработок требует некоторых DIP компонентов. Его называют IPC Type 1B.

Порядок проведения процесса: нанесение припойной пасты, установка компонентов, пайка, промывка.

 

Тип 2B: SMT Верхние и нижние стороны

На нижней стороне платы размещаются чип-резисторы и другие компоненты небольших размеров. При использовании пайки волной, они будут повторно оплавляться за счет верхнего (побочного) потока волны припоя. При размещение больших компонентов с обеих сторон, типа PLCC, увеличивают издержки производства, потому что компоненты нижней стороны должны устанавливаться на специальный токопроводящий клей. Данный тип называется IPC Type 2B.

Порядок проведения процесса:

Ø      нанесение припойной пасты, установка компонентов, пайка, промывка нижней стороны;

Ø      нанесение припойной пасты на верхнюю сторону печатной платы, установка компонентов, повторная пайка, промывка верхней стороны.

 

Специальный тип: SMT верхняя сторона в первом случае и верхняя и нижняя во втором, но PTH только верхняя сторона.

Этот метод установки используется, когда имеются DIP компоненты, в SMT сборке. Процесс включает размещение DIP компонентов, вставляемых в отверстия перед SMT пайкой. При использовании данного метода убирается лишняя операция пайки волной или ручной пайки PTH компонентов, что значительно уменьшает стоимость изделия. Первое требование - способность компонентов противостоять вторичной пайки. Кроме того, размеры отверстия платы, контактные площадки и геометрия трафарета должны быть точно совмещены, чтобы достичь качественной спайки. Плата должна иметь сквозные металлизированные отверстия и может быть односторонней или двухсторонний, то есть компоненты могут размещаться как с верхней так и с нижней стороны.

Обязательным требованием при использовании данного метода является наличие сквозных металлизированных отверстий.

Порядок обработки односторонней печатной платы:

Ø      нанесение припойной пасты, установка SMT компонентов, установка PTH компонентов, пайка, промывка верхней стороны.

Порядок обработки двухсторонней печатной платы:

Ø      нанесение припойной пасты, установка SMT компонентов, повторное оплавление, промывка нижней стороны;

Ø      установка PTH компонентов, пайка, промывка верхней стороны.

 

Тип 1С: SMT только верхняя сторона и PTH только верхняя сторона.

Данный метод является смешанной технологией сборки. Все модули SMT и PTH установлены на верхней стороне платы. Допускается установка некоторых компонентов монтируемых в отверстия (PTH) на верхней стороне платы, где размещены SMT компоненты для увеличения плотности. Данный тип сборки называется IPC Type 1C.

Порядок проведения процесса:

Ø      нанесение припойной пасты, установка, оплавление, промывка верхней части SMT;

Ø      автоматическая установка DIP, затем осевых компонентов (такие как светодиоды);

Ø      ручная установка других компонентов ;

Ø      пайка волной PTH компонентов, промывка.

 

Тип 2С: SMT верхняя и нижняя стороны или PTH на верхней и нижней стороне.

Установка поверхносто-монтируемых и монтируемых в отверстия (DIP) компонентов с обеих сторон платы не рекомендуется из-за высокой стоимости сборки. Эта разработка может требовать большого объема ручной пайки. Также не применяется автоматическая установка PTH компонентов из-за возможных конфликтов с SMT компонентами на нижней стороне платы. Данный тип сборки называется IPC Type 2C.

Порядок проведения процесса:

Ø      нанесение припойной пасты, установка, пайка, промывка верхней стороны SMT;

Ø      нанесение специального токопроводящего клея через трафарет, установка, фиксация SMT;

Ø      автоматическая установка DIP и осевых компоненты;

Ø      маскирование всей нижней стороны PTH компонентов;

Ø      ручная установка других компонентов;

Ø      пайка волной PTH и SMT компонентов, промывка;

Ø      ручная пайка нижней стороны PTH компонентов.

Тип 2C: SMT только нижняя сторона или PTH только верхняя.

Даннный тип предполагает размещение поверхностного крепления с нижней стороны платы и PTH на верхней стороне. Он также является одним из очень популярных видов размещения, т.к. позволяет значительно увеличить плотность размещения компонентов. Тип имеет название IPC Type 2C.

Порядок обработки (PTH конфликтов на нижней стороне нет):

Ø      нанесения клея через трафарет, установка, высыхания клея на нижней стороны SMT;

Ø      автоматическая установка DIP, затем осевых компонентов;

Ø      ручная установка других компонентов;

Ø      пайка волной PTH и SMT компонентов, промывка.

Альтернативный порядок обработки (PTH конфликтов на нижней стороне):

Ø      автоматическая установка DIP, затем осевых компонентов;

Ø      точечное нанесение клея (диспенсорный метод), установка, высыхания клея на нижней стороны SMT;

Ø      ручная установка компонентов;

Ø      пайка волной PTH и SMT компонентов, промывка.

 

Тип 2Y: SMT верхняя и нижняя стороны или PTH только на верхней стороне.

Данный тип позволяет располагать поверхностно монтируемые компоненты с обеих сторон платы, а DIP компоненты только на верхней. Это очень популярный вид сборки у разработчиков, позволяющий разместить компоненты с высокой плотность. Нижняя сторона SMT компонентов остается свободной от осевых элементов и ножек DIP компонентов. Например, нельзя размещать микросхемы между ножками DIP компонента.

Порядок проведения процесса (без размещения поверхносто монтируемых (SMT) между ножками монтируемых в отверстия (PTH) компонентов на нижней сторонеплаты):

Ø      нанесение припойной пасты, установка, пайка, промывка верхней стороны части SMT;

Ø      нанесение клея через трафарет, размещение, высыхание клея SMT на нижней стороне;

Ø      автоматическая установка DIP, а затем осевых компонентов;

Ø      ручная установка других компонентов;

Ø      пайка волной PTH и SMT компонентов, промывка;


Альтернативный порядок проведения процесса (на нижней сторонеплаты поверхносто монтируемых (SMT) компоненты размещены между ножек монтируемых в отверстия (PTH)):

Ø      нанесение припойной пасты, размещение, пайка, промывка верхней стороны части SMT;

Ø      автоматическая установка DIP, затем осевых компонентов;

Ø      точечное нанесение клея (диспенсорным методом), установка, высыхание клея на нижней стороны платы;

Ø      ручная установка других компонентов;

Ø      пайка волной PTH и SMT компонентов, промывка.

 

Технологический маршрут сборки печатных плат представлен на рисунке 2.1.

Рисунок 2.1 - Технологический маршрут сборки печатных плат.

2.2.  Нанесение припойной пасты.

Для крепления компонентов на печатную плату используются как метод нанесения припойной пасты, так и метод проводящих адгезивов. Метод нанесения припойной пасты - это наиболее широко используемый метод установки компонентов. Проводящий адгезив сейчас не используется широко в массовом производстве, хотя он используется в изготовлении товаров общего потребления. В методе нанесения припойной пасты наносится непосредственно на контактные площадки печатной платы. Каждый из методов требует своих специальных приспособлений и материалов.

2.2.1.     Выбор припойной пасты.

Припойные пасты, использовавшиеся ранее в производстве гибридных микросборок, были значительно улучшены применительно к технике поверхностного монтажа. Однако при разработке высоконадежного и экономически эффективного процесса изготовления изделий инженер-технолог должен выбрать припойную пасту с характеристиками, оптимально удовлетворяющими требованиям технологии производства конкретного изделия.

Характеристики припойных паст в первую очередь определяются их составом.


Состав припойных паст.

Припойные пасты, как правило, представляют собой смесь мелкодисперсного порошка материала припоя со связующей жидкой основой; при этом содержание порошка припоя составляет приблизительно 88 % от веса всей смеси (обычно этот показатель меняется в пределах от 85 до 92 %). Однако чаще всего состав припойных паст выражают через соотношение ингредиентов материала припоя. Так, например, 63/37 означает содержание в составе материала припоя 63 % олова и 37 % свинца, а 62/36/2-62 % олова, 36% свинца и 2 % серебра. Хотя оба этих состава довольно часто используются для приготовления припойных паст в ТПМК, существуют некоторые опасения, что присутствие в составе припоя добавки серебра способствует ускорению процесса выщелачивания серебра, входящего в состав материала выводов компонентов для поверхностного монтажа.

 

Характеристики частиц в припойных пастах.

Характеристики частиц материала припоя в припойной пасте оказывают существенное влияние на качество паяного соединения. Наиболее важным параметром, характеризующим припойный материал, является размер частиц припоя, который выражается в мешах (единицах измерений при классификации номеров сит). Так, 200/+325 означает припойную пасту, частицы которой проходят через сито номер 200, но не проходят через сито номер 325 после предварительного удаления крупнодисперсных частиц, т. е. их размер лежит в диапазоне 44-74 мкм. Если припойная паста наносится на коммутационную плату методом трафарет-ной печати, рекомендуется применять припойную пасту, у которой максимальный размер частиц припоя составляет половину размера ячейки трафарета.

Форма частиц материала припоя также оказывает существенное влияние на процесс трафаретной печати; считается, например, что использование в составе паст частиц припоя сферической формы облегчает процесс трафаретной печати, в то время как наличие частиц другой, отличной от сферической, формы может способствовать появлению загрязнений (например, трафарета), затрудняющих процесс печати. Частицы неправильной формы могут, кроме того, способствовать ускорению процессов окисления материалов припоя. Пульверизация расплавленного припоя, с помощью которой наиболее просто получить порошко-образные припои, образует частицы преимущественно сферической формы. Использование паст со сферическими частицами припоя позволило достичь требуемую воспроизводимость техно-логического процесса от одной партии изделий к другой при формировании рисунка припойной пасты.

 

Свойства флюсов.

Флюс в составе припойных паст служит не только для активации контактируемых металлических поверх-ностей, удаления с них окислов и предотвращения окисления припоя в процессе пайки (что необходимо для создания паяного соединения), но и обеспечивает требуемую растекаемость (реологию), а также изменение вязкости со временем (тиксотропность) при нанесении припойной пасты на коммутационную плату. Если состав припойной пасты имеет недостаточную вязкость, она будет растекаться, или "расползаться", что, несомненно, приведет к потере точности рисунка, обеспечиваемой трафаретом, а это в свою очередь может послужить причиной образования шариков припоя или перемычек в процессе пайки. Кроме того, количество припойной пасты, нанесенной на плату, в ряде мест может оказаться недостаточным из-за ее растекания по плате.

Для уменьшения растекания припойной пасты можно увеличить процентное содержание в ней порошка припоя. Можно также изменить химический состав флюса путем введения в него специальных вяжущих добавок (загустителей), но здесь нужно соблюдать меру, ибо в противном случае может произойти закупорка сопла дозатора или ячеек трафарета.

Флюс должен удалять окислы с контактируемых металлических поверхностей при пайке. Для эффективного протекания этого процесса очень важно правильно выбрать необходимый температурно-временной режим) пайки. Если во время разогрева платы температура повышается слишком быстро, то растворитель, входящий в припойную пасту в составе флюса, сразу испаряется, что приводит к потере активности флюса и разложению или выгоранию его компонентов; при этом расплавление припоя осуществляется неравномерно, а процесс пайки - непредсказуемо. Если же нагревательный цикл завершен преждевременно, то окислы в местах паяных соединений могут быть не полностью удалены. Формирование слоя припойной пасты рекомендуется производить в химически инертной атмосфере (для избежания окисления припоя). Некоторые сборочно-монтажные системы разработаны с учетом этой возможности.

 

Общие замечания.

Используемая припойная паста должна быть пригодна для реализации выбранного способа пайки, например в ПГФ либо с ИК-нагревом. Кроме того, паста должна быть совместима с остальными операциями технологического цикла. Пока еще трудно утверждать, нужна ли просушка припойной пасты после ее нанесения на плату с целью предотвращения быстрого испарения растворителя во время пайки и, соответственно, исключения вероятности искажения заданного рисунка припойного слоя. Просушка, несомненно, эффективна еще и с точки зрения улучшения фиксации компонентов, по крайней мере на период транспортировки собранной платы в зону пайки. И вместе с тем, если просушка паст применяется, то нужно принять соответствующие меры для предотвращения окисления припойного материала. При этом исправление брака и удаление припойной пасты существенно усложняются.

Промежуток времени между нанесением припойной пасты на коммутационную плату и процессом пайки является еще одним фактором, который нужно учитывать при выборе пасты; длительный промежуток времени может привести к ухудшению электрофизических параметров пасты. Припойная паста не должна ухудшать свои параметры не только в условиях термообработки при повышенной температуре, но и в условиях циклического воздействия температуры, которым подвергается плата как в процессе пайки, так и на других этапах изготовления изделия.

В дополнение к этому припойная паста должна быть стойкой к воздействию химических реактивов, используемых в ТПМК, особенно во время очистки смонтированных плат, в процессе которой применяются органические растворители на основе хлора и фтора, а также вода. Несомненно, припойная паста должна быть совместима с материалами коммутационной платы, а также с технологическими процессами, в которых она участвует. Распространенными материалами выводов или внешних контактов электронных компонентов являются золото, серебро, палладий-серебро, медь, а также луженая медь, и припойная паста должна выбираться таким образом, чтобы исключить выщелачивание этих материалов в местах пайки и повысить надежность паяного соединения.

2.2.2.     Трафаретный метод нанесения припойной пасты.

Наиболее важным в массовом производстве печатных плат, является метод трафаретного нанесения припойной пасты, в котором паста продавливается через трафарет (окна) на контактные площадки печатной платы. Припойная паста уже содержит в себе и припой, и флюс, а их пропорция одна из важных характеристик пасты. Материалом трафарета может быть как сплав никеля, так и нержавеющая сталь. Отверстия в трафарете обычно прорезаются лазером или протравливаются.

В массовом производстве этот метод эффективен, но относительно не гибок, так как свой собственный трафарет (причем несколько) требуется для каждой платы. Гибкость достигается только за счет быстрой смены трафарета и автоматического распределения пасты. Основные этапы этого метода показаны на рисунке.

При проведении скребком по поверхности трафарета припойная паста продавливается сквозь отверстия в трафарете на контактные площадки. Наиболее важной фазой этого процесса является продвижение пасты вдоль поверхности трафарета, она должна продвигаться с правильной силой, углом и скоростью. Трафарет и скребок должны быть чистыми и паста должна иметь строго определенные характеристики для этой силы, угла и скорости. Ошибки в этих параметрах приводят к плохим характеристикам пайки, такие как непропай и другие. Практика показывает, что больше половины ошибок всего процесса сборки печатных плат приходятся именно на процесс нанесения припойной пасты. Преимуществом метода трафаретного нанесения припойной пасты является то, что паста может быть нанесена слоем до 300 мкм с очень высокой точностью. Также трафарет позволяет наносить пасту толщиной до 0,65 мм.

 

2.2.3.     Дисперсный метод нанесения припоя.

Довольно часто встречающимся методом нанесения припойной пасты, применяемым в штучном и мелкосерийном производстве, является диспенсорный метод, в котором используется диспенсер - шприц. На рисунке 2.2 показано: 1 - крышка; 2 - давящий воздух; 3 - поршень; 4 - припойная паста; 5 - цилиндр; 6 - сопло; 7 - контактная площадка. Автоматическая дозировка осуществляется в соответствии с данными САПР при помощи сжатого воздуха. Паста поступает в виде "капель" непосредственно на контактные площадки печатной платы. Преимуществом диспенсорного метода является высокая гибкость его применения. Этим методом можно наносить пасту на контактные площадки толщиной от 0,75 мм.

Рисунок 2.2 – устройство для нанесения припоя дисперсным методом.

2.3.  Установка компонентов на плату.

Традиционные компоненты, монтируемые в отверстия были наиболее узким местом в процессе установки их на печатную плату, поскольку практически полностью исключали возможность автоматизации процесса.

Огромная экономия достигается внедрением технологии поверхностного монтажа в процессе установки компонентов. Гораздо проще и быстрее автоматизировать процесс установки поверхностно монтируемых компонентов, чем монтаж традиционных компонентов. Автоматизация процесса установки поверхностно монтируемых компонентов стала возможной, благодаря их корпусной структуре - CHIP структуре и, следовательно, поэтому нет необходимости устанавливать компоненты в отверстия на печатной плате. Также надо сказать об автоматизации этого процесса, что большинство автоматических машин для установки компонентов, могу устанавливать все типы SMD компонентов.

2.3.1.     Автоматическая установка компонентов.

Машины для автоматической установки работают по трем основным принципам: поочередная, поочередно-одновременная и одновременная установка компонентов. В аппаратах поочередной установки один компонент все время устанавливается одной или двумя установочными головками. Поочередная установка, также может проводиться при помощи револьверной головки. В поочередно-одновременной установке несколько компонентов может быть установлено одновременно. Установочные машины одновременного типа, устанавливают все или возможно-большее количество компонентов за один раз.

Поочередные и поочередно-одновременные машины, также называются последовательными и их основное преимущество в гибкости настройки. Если машина поочередной установки оснащена револьверной головкой, скорость установки компонентов на печатную плату значительно возрастает. Эти машины могут устанавливать компоненты нескольких типов. Место установки компонента может быть легко изменено, а точность установки достаточно высока.

Машины одновременной установки компонентов значительно производительней. Скорость установки компонентов может достигать 300000 компонентов в час, однако эти машины не так просты и гибки в настройке. Если для изменения места установки компонента в машинах поочередного и поочередно-одновременного типа достаточно изменить программы, то для машины одновременной установки требуются значительные ложные механические изменения. Поэтому, эти машины используются, в основном, для особо больших партий изделий.

2.3.2.     Ручная установка компонентов.

Поверхностно монтируемые компоненты могут устанавливаться как в ручную, так и механически. Ручная установка SMD компонентов проще, чем установка компонентов монтируемых в отверстия. Небольшие размеры и маленькое расстояние между проводниками вводит, однако, некоторые требования к рабочему инструменту и рабочей атмосфере. Чаще всего, эти компоненты устанавливаются на печатную плату при помощи вакуумного пинцета, использование различных насадок пинцета позволяет устанавливать компоненты практически всех типов. Ручная установка вакуумным пинцетом нуждается в специальной технической поддержке, чтобы компоненты были установлены правильно и точно на контактные площадки печатной платы. Это и ограничивает производительность ручной установки до порядка 500 компонентов в час.

3.      Поверхностно монтируемые компоненты.

Для PTH и SMT разработок выбор компонентов влияет на стоимость изделия, и время его изготовления. В процесс разработки любой печатной платы должно входить помимо проектирования принципиальной электросхемы, также проблемы выбора компонентов, их совместимости друг с другом, стоимость (как компонентов, так и процесса их установки) и ремонтопригодность всей платы.

На данный момент широкое применение получили только две технологии монтажа компонентов на печатные платы, это PTH (Pin - Through - Hole) и SMT ( Surface - Mount - Technology). У каждой из этих технологий есть свои достоинства и недостатки.

Использование SMD компонентов вместо традиционных, монтируемых в отверстия, позволило заметно сэкономить в месте, значительно понизить стоимость затрат на установку, тестирование сами чип-компоненты. Основными чип-компонентами являются ЧИП и MELF  резисторы, использование в которых полимерных резисторов недопустимо, по параметрам точности, шуму или стабильности. чип-конденсаторы заменили крупногабаритные конденсаторы, монтируемые в отверстия.

 

Преимущества SMT:

Ø      Меньшие размеры компонентов приводят к уменьшению размеров плат, что уменьшает себестоимость. Типичное SMT преобразование уменьшает пространство на плате до 30 % размера за счет отсутствия отверстий.

Ø      Большее количество функциональных возможностей для размера платы.

Ø      Компоненты могут легко размещаться с обеих сторон p.c. плата, что увеличивает плотность размещения.

Ø      Меньший размер изделия и вес могут уступать приведенным издержкам упаковки и увеличиваемое оборота рынка.

Ø      Меньшая масса изделия и более низкий профиль изделия могут улучшать вибро и ударопрочностные свойства.

Ø      Некоторые более новые компоненты доступны только в SMT модулях.

Ø      Ручная сборка PTH компонентов, которая заменяется автоматической сборкой SMT компонентов, потенциально уменьшает полные издержки производства.

Ø      SMT пайки имеет более высокий потенциал для выходов, чем пайка волной SMT или PTH компонентов. Пайка волной все еще считается, надежным процессом, но она может уступать по незначительно большему количеству дефектов.

Ø      При наличии требуемого оборудования процесс перепайки и замены элементов на SMT проще, чем на PTH платах. Удобная подача SMT интегральных схем может быть удаляться и заменяться неоднократно с той же самой платы без повреждения интегральной схемы или плату, что нельзя сделать с 40-pin DIP интегральными схемами (ИС).

 

Недостатки SMT:

Ø      Платы с SMT компонентами требуют специальной разработки и автоматизированного проектирования (CAD), c такими же высокими требованиями к допускам и качеству как и у p.c. платы.

Ø      Экономически оправданным методом применения SMT компонентов при изготовлении печатных плат является наличием оборудования автоматизации сборки.

Ø      Сборка руками практически не допустима.

Ø      Применение обычного паяльника при ремонте SMT плат не допустимо.

Ø      Любые технические изменения влекут за собой изменения расположения компонентов и требуют новых затрат, таких как изготовление нового трафарет для клея и т. п., что влечет за собой дополнительные расходы.

Ø      Некоторые разработки требуют применения DIP компонентов. При сборки таких плат приходиться применять автоматическую установку PTH и SMT компонентов, что увеличивает издержки на выполнение дополнительных сборочных шагов. В таких случаях, есть такие платы, реализация которых на DIP компонентах имела бы меньшую стоимость сборочной операции.

Ø      При применении SMT появляются дополнительные издержки на программирование процесса автоматизации сборки и изготовление трафаретов.

4.      Пайка.

Традиционная техника пайки волной припоя выполняется чаще всего погружением компонента в ванну с припоем. Для пайки на коммутационных платах компонентов в ТПМК обычно применяется метод расплавления дозированного припоя. Пайка расплавлением припоя в парогазовой фазе в настоящее время уступает место пайке с инфракрасным нагревом, лазерная же пайка пока не получила распространения. Ведущие поставщики сборочно-монтажного оборудования обычно включают установки для пайки в состав выпускаемых производственных линий.

Учет особенностей пайки на стадии проектирования изделий в сочетании с контролем режима процесса пайки снижает частоту появления дефектов на этапе пайки и очистки изделий до уровня (50-5000)

Появление на коммутационных платах поверхностно монтируемых компонентов существенно изменило технологию пайки. Пайка волной припоя была внедрена в 50-х гг. и до настоящего времени является единственным групповым методом пайки компонентов, устанавливаемых в отверстия коммутационных плат. Для пайки плат со смешанным монтажом (компоненты, монтируемые в отверстия с одной стороны платы и простые, монтируемые на поверхность (пассивные компоненты и транзисторы - с другой) был разработан метод пайки двойной волной припоя. Технология пайки поверхностно монтируемых компонентов расплавлением дозированного припоя в парогазовой фазе (ПГФ) появилась в 1973 г., когда фирма DuPont разработала и запатентовала специальные жидкие материалы. В течение нескольких лет Western Electric была единственной фирмой, пользовавшейся преимуществами этой новой разработки. В 1975 г. фирма ЗМ предложила новые материалы для пайки в ПГФ, а один из изготовителей оборудования для пайки (фирма НТС) стал ведущим поставщиком систем пайки в ПГФ. С 1983 г. основным конкурентом пайки в ПГФ стала пайка расплавлением дозированного припоя с помощью инфракрасного нагрева (ИК-пайка).

Эта краткая история иллюстрирует те изменения, которые претерпела технология пайки в США с появлением компонентов для поверхностного монтажа. В Японии пайка компонентов, устанавливаемых на поверхность недорогих плат с низкой плотностью монтажа, производится с применением нагретой плиты (или приспособления). Для чувствительных к тепловому воздействию и сложных микросборок с поверхностным монтажом тремя ведущими японскими компаниями была разработана и реализована лазерная пайка.

В настоящее время в Японии наиболее широко распространена ИК-пайка, в то время как пайка в ПГФ еще только внедряется.

Освоение техники пайки применительно к аппаратуре нового поколения сдерживается недостаточной изученностью физико-химических процессов, протекающих при пайке. Пользователи, внедряющие компоненты для ТПМК, обычно выбирают наиболее приемлемые методы и режимы пайки, а также соответствующее оборудование после предварительных экспериментальных исследований. Эксперименты являются также неотъемлемой частью процесса совершенствования конструкции изделия с учетом особенностей пайки.

4.1.   Пайка волной припоя.

Пайка волной припоя появилась 30 лет назад и в настоящее время достаточно хорошо освоена. Она применяется только для пайки компонентов в отверстиях плат (традиционная технология), хотя некоторые изготовители утверждают, что с ее помощью можно производить пайку поверхностно монтируемых компонентов с несложной конструкцией корпусов, устанавливаемых на одной из сторон коммутационной платы.

Процесс пайки прост. Платы, установленные на транспортере, подвергаются предварительному нагреву, исключающему тепловой удар на этапе пайки. Затем плата проходит над волной припоя. Сама волна, ее форма и динамические характеристики являются наиболее важными параметрами оборудования для пайки. С помощью сопла можно менять форму волны; в прежних конструкциях установок для пайки применялись симметричные волны. В настоящее время каждый производитель использует свою собственную форму волны (в виде греческой буквы "омега", Z-образную, Т-образную и др.). Направление и скорость движения потока припоя, достигающего платы, также могут варьироваться, но они должны быть одинаковы по всей ширине волны. Угол наклона транспортера для плат тоже регулируется. Некоторые установки для пайки оборудуются дешунтирующим воздушным ножом, который обеспечивает уменьшение количества перемычек припоя. Нож располагается сразу же за участком прохождения волны припоя и включается в работу, когда припой находится еще в расплавленном состоянии на коммутационной плате. Узкий поток нагретого воздуха, движущийся с высокой скоростью, уносит с собой излишки припоя, тем самым разрушая перемычки и способствуя удалению остатков припоя.

Когда впервые появились коммутационные платы, с обратной стороны которых компоненты устанавливались на поверхность, их пайка производилась волной припоя. При этом возникло множество проблем, связанных как конструкцией плат, так и с особенностями процесса пайки, а именно: непропаи и отсутствие галтелей припоя из-за эффекта затенения выводов компонента другими компонентами, преграждающими доступ волны припоя к соответствующим контактным площадкам, а также наличие полостей с захваченными газообразными продуктами разложения флюса, мешающих дозировке припоя.

 

Пайка двойной волной припоя

Совершенствование конструкции платы оказалось недостаточным для достижения высокого уровня годных при традиционных способах изготовления изделий с простыми компонентами, монтируемыми на поверхность обратной стороны плат. Потребовалось изменить технологический процесс пайки волной, внедрив вторую волну припоя. Первая волна делается турбулентной и узкой, она исходит из сопла под большим давлением (рис. 1). Турбулентность и высокое давление потока припоя исключает формирование полостей с газообразными продуктами разложения флюса. Однако турбулентная волна все же образует перемычки припоя, которые разрушаются второй, более пологой ламинарной волной с малой скоростью истечения. Вторая волна обладает очищающей способностью и устраняет перемычки припоя, а также завершает формирование галтелей. Для обеспечения эффективности пайки все параметры каждой волны должны быть регулируемыми. Поэтому установки для пайки двойной волной должны иметь отдельные насосы, сопла, а также блоки управления для каждой волны. Установки для пайки двойной волной рекомендуется приобретать вместе с дешунтирующим ножом, служащим для разрушения перемычек из припоя.

Пайка двойной волной припоя применяется в настоящее время для одного типа коммутационных плат: с традиционными компонентами на лицевой стороне и монтируемыми на поверхность простыми компонентами (чипами и транзисторами) на обратной. Некоторые компоненты для ТПМК (даже пассивные) могут быть повреждены при погружении в припой во время пайки. Поэтому важно учитывать их термостойкость. Если пайка двойной волной применяется для монтажа плат с установленными на их поверхности компонентами сложной структуры, необходимы некоторые предосторожности:

Ø      применять поверхностно монтируемые ИС, не чувствительные к тепловому воздействию;

Ø      снизить скорость транспортера;

Ø      проектировать коммутационную плату таким образом, чтобы исключить эффект затенения.

Хорошо разнесенные, не загораживающие друг друга компоненты способствуют попаданию припоя на каждый требуемый участок платы, но при этом снижается плотность монтажа. При высокой плотности монтажа, которую позволяет реализовать ТПМК, с помощью данного метода практически невозможно пропаять поверхностно монтируемые компоненты с четырехсторонней разводкой выводов (например, кристаллоносители с выводами). Чтобы уменьшить эффект затенения, прямоугольные чипы следует размещать перпендикулярно направлению движения волны. Трудно паять двойной волной припоя транзистор в корпусе 50Т-89, поскольку он имеет довольно массивный центральный вывод, что затрудняет его равномерное смачивание припоем (и растекание припоя) по всей поверхности.

4.2.   Пайка расплавлением дозированного припоя с инфракрасным (ИК) нагревом.

Процесс пайки компонентов, собранных на коммутационной плате, с помощью ИК-нагрева аналогичен пайке в ПГФ, за исключением того, что нагрев платы с компонентами производится не парами жидкости, а ИК-излучением.

Основным механизмом передачи тепла, используемым в установках пайки с ИК-нагревом, является излучение. Передача тепла излучением имеет большое преимущество перед теплопередачей за счет теплопроводности и конвекции в описанных ранее методах, так как это единственный из механизмов теплопередачи, обеспечивающий передачу тепловой энергии по всему объему монтируемого устройства. Остальные механизмы теплопередачи обеспечивают передачу тепловой энергии только поверхности монтируемого изделия. В отличие от пайки в ПГФ, в процессе пайки с ИК-излучением скорость нагрева регулируется изменением мощности каждого излучателя и скорости движения транспортера с коммутационными платами. Поэтому термические напряжения в компонентах и платах могут быть снижены посредством постепенного нагрева микросборок. Основным недостатком пайки с ИК-нагревом является то, что количество энергии излучения, поглощаемой компонентами и платами, зависит от поглощающей способности материалов, из которых они изготовлены. Поэтому нагрев осуществляется неравномерно в пределах монтируемого устройства. Пайка кристаллоносителей без выводов или с J-образными выводами может оказаться невозможной в установках с ИК-нагревом, если компонент непрозрачен для ИК-излучения.

В некоторых установках для пайки с ИК-нагревом вместо ламп ИК-излучения применяются панельные излучающие системы. В этом случае излучение имеет намного большую длину волны, чем излучение традиционных источников. Излучение такой излучающей системы не нагревает непосредственно микросборку, а поглощается технологической средой, которая в свою очередь передает тепло микросборке за счет конвекции. Этот способ пайки устраняет ряд недостатков, присущих традиционной пайке с ИК-нагревом, таких, как неравномерный прогрев отдельных частей микросборки и невозможность пайки компонентов в корпусах, непрозрачных для ИК-излучения. Панельные излучатели имеют ограниченный срок службы и обеспечивают намного меньшую скорость нагрева, чем традиционные источники ИК-излучения. Однако при их использовании может не потребоваться технологическая среда из инертного газа.

 

Технологические установки пайки ИК излучением

В зависимости от соотношения температур источника излучения и нагреваемого объекта процессы нагрева можно разделить на термодинамически равновесные и неравновесные. При равновесном нагреве температура нагревателя и объекта близки друг к другу (например, нагрев в парах кипящей жидкости), при неравновесном - значительно отличаются. На практике желательно иметь равновесный режим нагрева, позволяющий устранить неравномерность нагрева и другие отрицательные факторы.

Первые установки ИК оплавления использовали для нагрева ламповые ИК излучатели с температурой 700-800° С. Поскольку температура пайки составляет 210-215° С, то режим нагрева значительно отличался от равновесного, при этом возникали перегретые участки, обусловленные, в частности, различной степенью черноты поверхностей. Улучшение характеристик установок было получено переходом на излучатели, работающие в средневолновом ИК диапазоне (3-10 мкм). Конструктивно такие излучатели представляют собой керамические панели больщих размеров со значительным количеством воздушных камер, работающих при температуре 280-320° С. В таких устройствах до 60 % тепловой энергии доставляется к объекту за счет естественной конвекции, 40 % - при помощи средневолнового ИК излучения. Такие комбинированные установки производят нагрев объекта в режиме, близком к равновесному, и в настоящее время широко используются при монтаже ТМП ФУ.

Конструкция типичной установки ИК оплавления приведена на рисунке 4.1. Установка состоит из корпуса 1, внутри которого расположено несколько зон нагрева, в каждой из которых поддерживается заданный тепловой режим. В первой и второй зонах производят постепенный предварительный нагрев изделия 2 с помощью плоских нагревателей 3. Пайку производят в третьей зоне быстрым нагревом объекта выше температуры плавления припоя с помощью кварцевых ИК ламп 4, затем объект охлаждают с помощью устройства 5.

Рисунок 4.1 – Схема установки пайки ИК-излучением.

Печатные платы транспортируются через установку на ленточном (обычно сетка из нержавеющей стали) конвейере 6. Режимы работы нагревателя и скорость конвеера регулируются с помощью микропроцессорной системы 7, температурный профиль вдоль установки отображается в графической и цифровой форме на экране дисплея 8. Характеристики температурного профиля, т. е. значения температур в каждой зоне , возможно изменять в широких пределах, также возможно иметь библиотеку типовых режимов оплавления для печатных плат различных типоразмеров.

4.3.   Пайка расплавлением дозированного припоя в парогазовой фазе (ПГФ).

Пайка расплавлением дозированного припоя применима только к микросборкам с поверхностным монтажом. Она значительно отличается от ранее описанных методов. Процесс начинается с нанесения способом трафаретной печати припойной пасты на контактные площадки коммутационной платы. Затем на поверхность платы устанавливаются компоненты. В ряде случаев припойную пасту просушивают после нанесения, с целью удаления из ее состава летучих ингредиентов или предотвращения смещения компонентов непосредственно перед пайкой. После этого плата разогревается до температуры расплавления. В результате образуется паяное соединение между контактной площадкой платы и выводом компонента. Такая техника пайки применима к коммутационным платам без монтируемых в отверстия компонентов, т. е. с набором только поверхностно монтируемых компонентов любых типов.

Метод пайки в парогазовой фазе является разновидностью пайки расплавлением дозированного припоя, в ходе которой пары специальной жидкости конденсируются на коммутационной плате, отдавая скрытую теплоту парообразования открытым участкам микросборки. При этом припойная паста расплавляется и образует галтель между выводом компонента и контактной площадкой платы. Когда температура платы достигает температуры жидкости, процесс конденсации прекращается, тем самым заканчивается и нагрев пасты. Повышение температуры платы, от ее начальной температуры (например, окружающей среды перед пайкой) до температуры расплавления припоя, осуществляется очень быстро и не поддается регулированию. Поэтому необходим предварительный подогрев платы с компонентами для уменьшения термических напряжении в компонентах и местах их контактов с платой. Температура расплавления припоя также не регулируется и равна температуре кипения используемой при пайке жидкости. Такой жидкостью является инертный фторуглерод, например РС-70 производства фирмы ЗМ.

Рисунок 4.2 – Схематическое представление пайки ПГФ с двумя технологическими средами.

Существуют два типа установок для пайки в парогазовой фазе: с применением одной либо двух рабочих жидкостей. В первых установках для пайки в ПГФ применялись две рабочих жидкости (рисунок 4.2), при этом использовались обычно несколько установок пайки в составе производственной линии. С целью предотвращения утечки паров дорогого фторуглерода и припоя поверх основной технологической среды из инертного фторуглерода создавалась дополнительная технологическая среда из более дешевого фреона. Основной недостаток этих установок состоял в том, что на границе двух технологических сред происходило образование различных кислот. Поэтому для защиты коммутационных плат (защита коммутационных плат необходима в первую очередь от разрушающего действия кислот на материал коммутации (химическая, а затем электрохимическая коррозия). Кроме того, рабочая часть контейнера установки пайки в ПГФ должна изготовляться из коррозионностойкого материала, что отражается на стоимости такого оборудования) требовались системы нейтрализации кислот.

Установки для пайки с двумя рабочими жидкостями оказались непригодны для линий сборки электронной аппаратуры. Поэтому в 1981 г. фирмой НТС стали выпускаться установки для пайки в ПГФ, встраиваемые в технологические сборочно-монтажные линии. Такие установки имеют относительно небольшие входное и выходное отверстия, позволяющие реализовать систему с одной технологической средой (рис. 2). Приведенная на рисунке 4.3 конструкция обеспечивает возможность включения установки в состав технологической линии.

Рисунок 4.3 – Схематическое представление пайки в ПГФ с использованием одной технологической среды.

При использовании установки для пайки в ПГФ таких компонентов, как чип-конденсаторы и чип-резисторы, может возникнуть проблема, известная как "эффект опрокидывания компонента". Причина опрокидывания компонентов до конца не изучена, и универсальных средств для избежания этого в настоящее время не существует. Необходимо варьировать параметры процесса пайки до тех пор, пока не прекратится опрокидывание компонентов.

4.4.   Лазерная пайка.

Лазерная пайка (пайка лучом лазера) не относится к групповым методом пайки, поскольку монтаж ведется по каждому отдельному выводу либо по ряду выводов. Однако бесконтактность приложения тепловой энергии позволяет повысить скорость монтажа до 10 соединений в секунду и приблизиться по производительности к пайке в паровой фазе и ИК излучением

По сравнению с другими методами лазерная пайка обладает рядом следующих преимуществ. Во время пайки печатная плата и корпуса элементов практически не нагреваются, что позволяет монтировать элементы, чувствительные к тепловым воздействиям. В связи с низкой температурой пайки и ограниченной областью приложения тепла резко снижаются температурные механические напряжения между выводом и корпусом. Выбор материала основания не является критическим. Кратковременные действия тепла - 20...30 мс, резко снижаются толщина слоя интерметаллидов, припой имеет мелкозернистую структуру, что положительно сказывается на надежности ПС. Установки лазерной пайки могут быть полностью автоматизированы, при этом возможно использовать данные САПР для печатных плат.

Возможна пайка плат с высокой плотностью компоновки элементов, с размерами контактных площадок до 25 мкм, без образования перемычек на соседние соединения или их повреждения.

При использовании хорошо просушенной паяльной пасты выполненные с помощью лазерной пайки ПС не образуют шариков припоя или перемычек, в результате чего отпадает необходимость применять паяльные маски.

При использовании лазерной пайки нет необходимости в предварительном подогреве многослойной печатной платы, что обычно необходимо делать при пайке в паровой фазе для предотвращения расслоения платы. Не требуется также создавать какую-либо специальную газовую среду. Процесс пайки ведется в нормальной атмосфере без применения инертных газов.

4.5.   Пайка в глухие отверстия.

Компоненты с планарными выводами являются более компактными по габаритам, чем со штыревыми выводами, расположенными по краям корпуса. Однако компоненты с планарными выводами при типовой формовке выводов и установке на ПП требует значительных площадей для расположения ламелей. Так, микросхема с 14-ю планарными выводами и корпусом шириной 10мм (рисунок 4.4), имеет габарит установочного места 18 мм. Это объясняется формовкой выводов, нижняя горизонтальная часть которых имеет длину 2,1 мм. Для рельефных плат можно изменить формовку выводов таких микросхем так, как это показано на рисунке, и проводить их установку в "глухие отверстия". "Глухие отверстия" имеют диаметр на поверхности диэлектрика, равный ширине ламели. Такое конструктивное решение сокращает площадь установочного места на 20-25%. Учитывая высокие трассировочные возможности РМ это повышает степень интеграции компонентов на РП на 18-20%.

Рисунок 4.4 – Пример монтажа МС с планарными выводами.

 

Рекомендую посетить:

1.      Статьи по печатным платам - http://www.rezonit.ru/pcb/articles/

2.      Печатные платы быстродействующих устройств - http://www.fpgaletsky.ru/fpg/bdpp_gal/bdpp_g.htm

3.      Лекции д.т.н.Галецкого Франца Петровича «Печатные платы. Поверхностный монтаж» - http://www.fpgaletsky.ru/fpg/lekcii/indexl.htm

4.      Сайт посвященный технологии поверхностного монтажа - http://olav-smt.narod.ru/

5.      Экскурсия на фабрику GigaByte по производству материнских плат - http://www.3dnews.ru/motherboard/gigabyte-manufacture/

6.      Как делают материнские платы: на примере Iwill - http://www.3dnews.ru/motherboard/iwill-manufacture/

Использованные источники.

  1. Основная часть материала была взята с сайта http://pcbfab.ru, а именно http://pcbfab.ru/index.php?name=pcbfab
  2. http://www.rezonit.ru/, а именно http://www.rezonit.ru/pcb/articles/technology/10/
  3. Кокотов В.З. Конструкции, Технология и автоматизирование проектирование рельефного монтажа: Учеб. пособие. - М.: Изд-во МАИ, 1998.- 96 с.: ил.
  4. В.Кокотов, Е.Сычева. САПР рельефного монтажа. http://kis.pcweek.ru/N11/CP1251/Sapr/chapt2.htm
  5. Симонов А.Г., Бабокин Е.И., Борисов А.И. Инструментальные средства информационных технологий: проблемы и перспективы. Журнал "Технологическое оборудование и материалы".
  6. J. Fjelstad, B. Jacobi. Flexible Printed Circuits: A Technology on the Move. Board Authority, 2001, v.3, № 1, p.6-10.

Оригинал отчета можно скачать отсюда: smt_tehnology.rar (330 kb), но в нем несколько меньше информации.

Начало документа


<<< Назад   Главная раздела


ККВ         Страница создана 27.10.2005 г.

© 2002-2005 г. Кравченко Кирилл Васильевич (ККВ)

Rambler's Top100 Рейтинг
сайтов АУДИО ПОРТАЛ
Сайт управляется системой uCoz